Qualconn Improved Training Technique for Shortcut Models

Trung Dao

All authors are affiliated with Oualcomm AI Research Oualcomm AI Research is ar initiative of Oualcomm Technologies, Inc

NeurIPS 2025

Anh Nguyen*

Viet Nguyen*

Duc Vu

Chi Tran

Toan Tran

Anh Tran

Improved Shortcut Models

- Shortcut models represent a promising, non-adversarial paradigm for generative modeling, uniquely supporting onestep, few-step, and multi-step sampling from a single trained network.
- However, their widespread adoption has been **stymied** by critical performance bottlenecks.

This paper **FIRST tackle FIVE core issues** that held shortcut models back!

1 (g guidance
Lom	OXOLUIATORIAL	8 8000 MINIOR
±. •••	podridii	5 5 a l'alai l'00

- 2. Inflexible fixed guidance
- 3. Curvy flow trajectories
- 4. Frequency bias
- 5. Divergent self-consistency

Method	$FID_{N=1} \downarrow$	$ ext{FID}_{N=4}\downarrow$			
Shortcut Models [20]	21.38	13.46			
Improved Shortcut Models (iSM)					
+ Intrinsic Guidance	9.62	3.17			
+ Interval Guidance in Training	8.49	2.81			
+ Multi-level Wavelet Function	8.12	2.64			
+ Scaling Optimal Transport	7.97	2.23			
+ Twin EMÂ	6.56	2.16			

Our method achieves state-of-the-art FID scores, making shortcut models a viable class of generative models

state-of-the-art FID scores, making shortcut models a viable class of generative models capable of one-step, few-step, and multistep sampling

Our method achieves

One-to-Many Step Models				
iCT [58]	34.24	1	675M	
	20.3	2	675M	
SM [20]	10.60	1	675M	
	7.80	4	675M	
	3.80	128	675M	
IMM [73]	7.77	1	675M	
	3.99	2	675M	
	2.51	4	675M	
	1.99	8	675M	
iSM (ours)	5.27	1	675M	
	2.44	2	675M	
	2.05	4	675M	
	1.93	8	675M	
	1.88	128	675M	

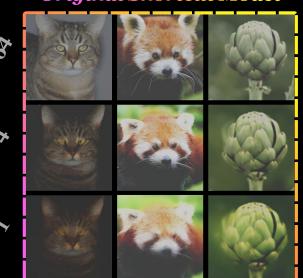
1. Intrinsic Guidance conditions the network on explicit scale to enable dynamic inference control. This resolves **inflexible fixed guidance** and mathematically corrects the compounding guidance flaw by preventing exponential signal amplification.

e Hidden Flaw of Compounding Guidance **Proposition 1.** The model's prediction for a single large shortcut step of size Nd = 1approximately equals the average of the guided displacements corresponding to the Nsmallest steps, but with an exponentially compounded guidance scale:

$$\mathbf{s}_{\theta}(\mathbf{x}_{0}, 0, c, Nd) \approx \frac{1}{N} \sum_{i=0}^{N-1} \mathbf{g}_{\theta}^{w^{\log_{2}(N)}} \left(\mathbf{x}_{\frac{i}{N}}^{\prime}, \frac{i}{N}, c, d \right).$$
 (6)

Proof. See Appendix A.

Original Shortcut Model



Improved Shortcut Models

Guided Self-Consistency Objective. This objective generalizes the self-consistency principle from [20] to operate with arbitrary step sizes (d > 0) and any guidance scale $(w \ge 0)$. The objective maintains the foundational properties of shortcut models, where a single, large guided shortcut step yields an output consistent with the composition of two smaller, consecutive guided steps.

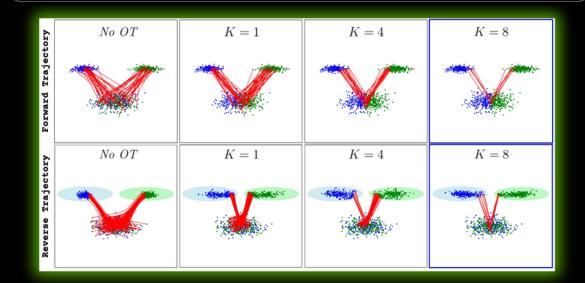
$$\mathcal{L}_{\text{consistency}}(\theta) := \mathbb{E}_{\boldsymbol{x}_{0} \sim \mathcal{N}, (\boldsymbol{x}_{1}, c) \sim D} \Big[\| \boldsymbol{s}_{\theta}(\boldsymbol{x}_{t}, t, c, 2d, w) - \boldsymbol{s}_{\text{consistency}} \|^{2} \Big],$$
where $\boldsymbol{s}_{\text{consistency}} := \boldsymbol{s}_{\theta^{-}}(\boldsymbol{x}_{t}, t, c, d, w) / 2 + \boldsymbol{s}_{\theta^{-}}(\boldsymbol{x}'_{t+d}, t, c, d, w) / 2$
and $\boldsymbol{x}'_{t+d} = \boldsymbol{x}_{t} + \boldsymbol{s}_{\theta}(\boldsymbol{x}_{t}, t, c, d, w) d,$

$$(10)$$

where θ^- is the EMA target network. The stop-gradient operator $sg(\cdot)$ is applied to the entire consistency target to stabilize training, following standard practice for self-consistency objectives.

2. Twin EMA maintains a fast-decay network for fresh targets and a slowdecay network for inference. This resolves divergent self-consistency by eliminating the temporal lag that causes conflicts between training stability and target currency.

3. Scaling Optimal Transport (sOT) aggregates mini-batches to compute a global transport plan. This disentangles noise-data couplings to straighten curvy flow trajectories, minimizing the training variance caused by intersecting paths.



4. Multi-Level Wavelet Function utilizes DWT to enforce a frequency-aware error signal. This mitigates the frequency bias inherent in pixel-wise losses by explicitly supervising the reconstruction of neglected high-frequency details.

Multi-Level Wavelet Function

