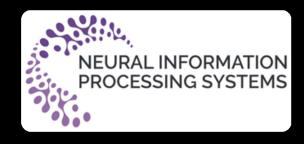
Qualconn



Improved Training Technique for Shortcut Models

NeurIPS 2025

Anh Nguyen*

Viet Nguyen*

Duc Vu

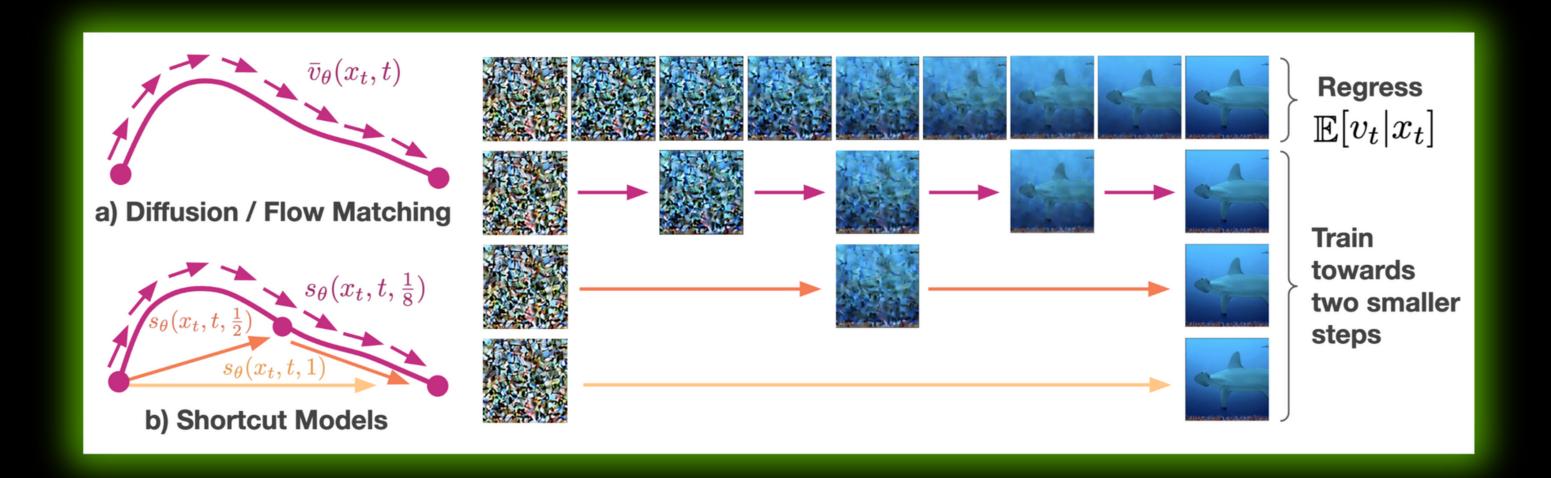
Trung Dao

Chi Tran

Toan Tran

Anh Tran

Shortcut Models: Promising and Unique Class of Generative Models



This is unique:

- 1. A single network, trained **end-to-end**, that can "jump" or "shortcut" the generation process.
- 2. This design inherently supports **one-step**, **few-step**, **and many-step** generation.

Shortcut Models: An Elegant Idea. Hampered by a Hidden Flaw

This paper FIRST tackle the FIVE core issues that held shortcut models back!

One-to-Many Step Models				
iCT [58]	34.24	1	675M	
	20.3	2	675M	
SM [20]	10.60	1	675M	
	7.80	4	675M	
	3.80	128	675M	
IMM [73]	7.77	1	675M	
	3.99	2	675M	
	2.51	4	675M	
	1.99	8	675M	
iSM (ours)	5.27	1	675M	
	2.44	2	675M	
	2.05	4	675M	
	1.93	8	675M	
	1.88	128	675M	

- 1. Compounding guidance
- 2. Inflexible fixed guidance
- 3. Curvy flow trajectories
- 4. Frequency bias
- 5. Divergent self-consistency

Method	$\mathbf{FID}_{N=1}\downarrow$	$ extstyle{FID}_{N=4}\downarrow$		
Shortcut Models [20]	21.38	13.46		
Improved Shortcut Models (iSM)				
+ Intrinsic Guidance	9.62	3.17		
+ Interval Guidance in Training	8.49	2.81		
+ Multi-level Wavelet Function	8.12	2.64		
+ Scaling Optimal Transport	7.97	2.23		
+ Twin EMA	6.56	2.16		

Component 1: Fixing Artifacts with Intrinsic Guidance

Observation:

- 1. Hidden flaw of compounding guidance, which we are the first to formalize, causing severe image artifacts.
- 2. Inflexible fixed guidance that restricts inference-time control.

Solution: We introduce Intrinsic Guidance, making the guidance scale w an explicit input to the model.

Result: Provides explicit, dynamic control resolving both the compounding guidance flaw and the inflexibility of prior models.

Original Shortcut Model

Proposition 1. The model's prediction for a single large shortcut step of size Nd = 1 approximately equals the average of the guided displacements corresponding to the N smallest steps, but with an exponentially compounded guidance scale:

$$\boldsymbol{s}_{\theta}(\boldsymbol{x}_{0}, 0, c, Nd) \approx \frac{1}{N} \sum_{i=0}^{N-1} \boldsymbol{g}_{\theta}^{w^{\log_{2}(N)}} \left(\boldsymbol{x}_{\frac{i}{N}}^{\prime}, \frac{i}{N}, c, d\right).$$
 (6)

Proof. See Appendix A.

The hidden flaw of compounding guidance

Component 1: Fixing Artifacts with Intrinsic Guidance

Observation:

- 1. Hidden flaw of compounding guidance, which we are the first to formalize, causing severe image artifacts.
- 2. Inflexible fixed guidance that restricts inference-time control.

Solution: We introduce Intrinsic Guidance, making the guidance scale w an explicit input to the model.

Result: Provides explicit, dynamic control resolving both the compounding guidance flaw and the inflexibility of prior models.

Original Shortcut Model

Guided Self-Consistency Objective. This objective generalizes the self-consistency principle from [20] to operate with arbitrary step sizes (d > 0) and any guidance scale $(w \ge 0)$. The objective maintains the foundational properties of shortcut models, where a *single*, *large guided shortcut step* yields an output consistent with the composition of *two smaller*, *consecutive guided steps*.

$$\mathcal{L}_{\text{consistency}}(\theta) := \mathbb{E}_{\substack{\boldsymbol{x}_0 \sim \mathcal{N}, (\boldsymbol{x}_1, c) \sim D \\ (t, w, d) \sim p(t, w, d)}} \Big[\| \boldsymbol{s}_{\theta}(x_t, t, c, 2d, w) - s_{\text{consistency}} \|^2 \Big],$$
where $s_{\text{consistency}} := s_{\theta^-}(x_t, t, c, d, w)/2 + s_{\theta^-}(x'_{t+d}, t, c, d, w)/2$
and $x'_{t+d} = x_t + s_{\theta}(x_t, t, c, d, w)d,$

$$(10)$$

where θ^- is the EMA target network. The stop-gradient operator $sg(\cdot)$ is applied to the entire consistency target to stabilize training, following standard practice for self-consistency objectives.

Intrinsic Guidance Training for Shortcut Models

Component 1: Fixing Artifacts with Intrinsic Guidance

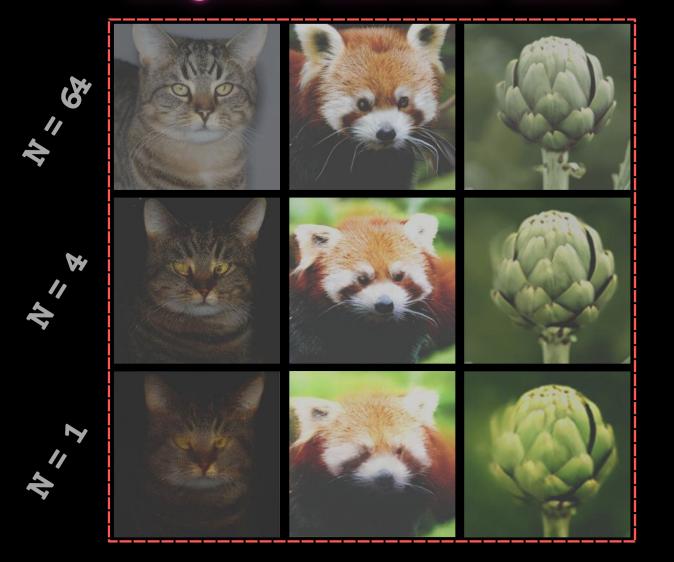
Observation:

- 1. Hidden flaw of compounding guidance, which we are the first to formalize, causing severe image artifacts.
- 2. Inflexible fixed guidance that restricts inference-time control.

Solution: We introduce Intrinsic Guidance, making the guidance scale w an explicit input to the model.

Result: Provides explicit, dynamic control resolving both the compounding guidance flaw and the inflexibility of prior models.

Original Shortcut Model



Guided Self-Consistency Objective. This objective generalizes the self-consistency principle from [20] to operate with arbitrary step sizes (d>0) and any guidance scale $(w\geqslant 0)$. The objective maintains the foundational properties of shortcut models, where a *single*, *large guided shortcut step* yields an output consistent with the composition of *two smaller*, *consecutive guided steps*.

$$\mathcal{L}_{\text{consistency}}(\theta) \coloneqq \mathbb{E}_{\boldsymbol{x}_0 \sim \mathcal{N}, (\boldsymbol{x}_1, c) \sim D} \left[\| \boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t, c, 2d, w) - \boldsymbol{s}_{\text{consistency}} \|^2 \right],$$
where $\boldsymbol{s}_{\text{consistency}} \coloneqq \boldsymbol{s}_{\theta^-}(\boldsymbol{x}_t, t, c, d, w) / 2 + \boldsymbol{s}_{\theta^-}(\boldsymbol{x}'_{t+d}, t, c, d, w) / 2$
and $\boldsymbol{x}'_{t+d} = \boldsymbol{x}_t + \boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t, c, d, w) d,$

$$(1)$$

where θ^- is the EMA target network. The stop-gradient operator $sg(\cdot)$ is applied to the entire consistency target to stabilize training, following standard practice for self-consistency objectives.

Intrinsic Guidance

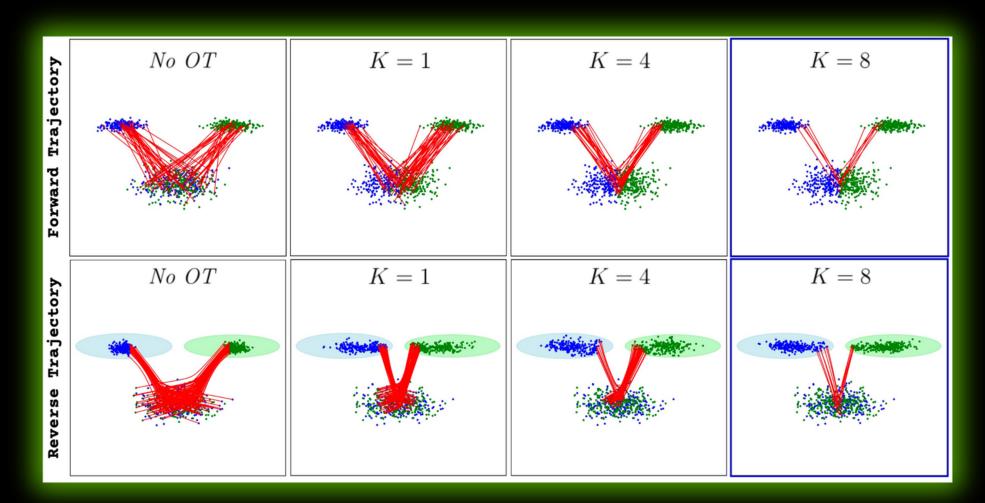
Intrinsic Guidance Training for Shortcut Models

Improved Shortcut Models



Component 2: Straightening the Curvy Generative Trajectories with sOT

Observation: Conventional random pairing of noise and data results in high-curvature generative paths.



Efficacy of sOT in improving shortcut model training, demonstrated by **varying the OT scaling factor K**.

On a bimodal target, forward trajectories (top row) without OT exhibit **frequent intersections** (**red**), compelling the reverse generative process (bottom row) to follow **high-curvature paths** that initially average the target modes (**blue**, **green**).

Our sOT method, by increasing the effective OT scaling K, progressively disentangles these forward couplings, yielding substantially straighter reverse trajectories.

Solution: We introduce **Scaling Optimal Transport (sOT)** to straighten generative trajectories by periodically computing a large-scale transport plan.

Result: This yields straighter generative paths.

Component 3: Against Frequency Bias by Multi-Level Wavelet Function

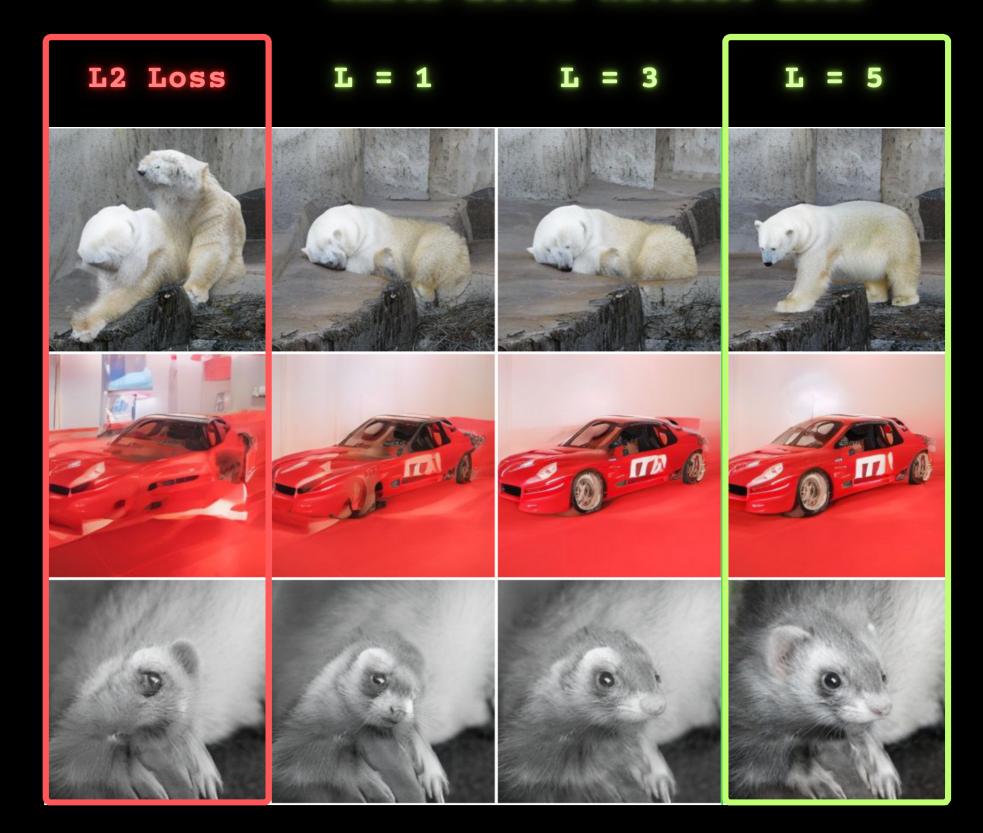
Multi-Level Wavelet Loss

Observation: Standard L2 loss causes a "frequency bias," prioritizing low-frequency structures and resulting in blurry textures.

L is the number of recursive decomposition levels in the Discrete Wavelet Transform.

Solution: We replace L2 with a Multi-Level Wavelet Loss, forcing the model to reconstruct details across the entire frequency spectrum.

Result: Sharper, more detailed images, especially in the challenging few-step setting.



Component 4: Resolving Divergent Self-Consistency with Twin EMA

Observation: The self-consistency objective was conflicting, as the model tried to match targets generated by an outdated, slow-moving version of itself (the EMA network).

Guided Self-Consistency Objective. This objective generalizes the self-consistency principle from [20] to operate with arbitrary step sizes (d > 0) and any guidance scale $(w \ge 0)$. The objective maintains the foundational properties of shortcut models, where a *single*, *large guided shortcut step* yields an output consistent with the composition of *two smaller*, *consecutive guided steps*.

$$\mathcal{L}_{\text{consistency}}(\theta) \coloneqq \mathbb{E}_{\substack{\boldsymbol{x}_0 \sim \mathcal{N}, \, (\boldsymbol{x}_1, c) \sim D \\ (t, w, d) \sim p(t, w, d)}} \Big[\| \boldsymbol{s}_{\theta}(x_t, t, c, 2d, w) - s_{\text{consistency}} \|^2 \Big],$$
where $s_{\text{consistency}} \coloneqq s_{\theta^-}(x_t, t, c, d, w)/2 + s_{\theta^-}(x'_{t+d}, t, c, d, w)/2$
and $x'_{t+d} = x_t + s_{\theta}(x_t, t, c, d, w)d,$

$$(10)$$

where θ^- is the EMA target network. The stop-gradient operator $sg(\cdot)$ is applied to the entire consistency target to stabilize training, following standard practice for self-consistency objectives.

Solution: We use a Twin EMA strategy -- a fast-decay EMA for up-to-date training targets and a slow-decay EMA for stable inference.

Result: Resolves the training conflict, leading to faster convergence and better final performance.

Conclusion: Unique and Competitive Class of Generative Models

This paper **FIRST** tackle
the **FIVE core issues**that held shortcut models back!

- 1. Compounding guidance
- 2. Inflexible fixed guidance
- 3. Curvy flow trajectories
- 4. Frequency bias
- 5. Divergent self-consistency

Our method achieves state-of-the-art FID scores, making shortcut models a viable class of generative models capable of one-step, few-step, and multi-step sampling.